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Least squares problems

Given the matrix A ∈ Rm×n with rank(A) = n and the vector b ∈ Rm the
(linear) least squares problem is to find x̂ ∈ Rn such that

‖b−Ax̂‖2 = min
x
‖b−Ax‖2. (LS)

The (unique) solution of (LS) can be found by solving the system of normal
equations

ATAx = AT b ⇒ x̂ = (ATA)−1AT b ≡ A†b.

The least squares problem can be interpreted as the orthogonal decomposition of
b onto R(A) and N (AT ) = R(A)⊥:

b = PAb+ P⊥A b = Ax̂+ r̂,

where PA ≡ AA† and P⊥A = I − PA.

For useful background, see Björck [1996], [Golub and Van Loan, 1996, Chap. 5],
Lawson and Hanson [1974].
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Solution methods for sparse least squares problems

Solution methods for linear least squares problems are usually based on some
algorithm applied (explicitly or implicitly) either on the symmetric positive definite
system of normal equations

ATAx = AT b ⇔ AT r = 0, r = b−Ax,

or on the indefinite system [
I A
AT 0

] [
r
x

]
=
[
b
0

]
.

Classification of solution methods for sparse problems:

I Direct methods: variants of the Gaussian elimination, QR factorization.

I Iterative methods: classical (stationary) methods, Krylov subspace
methods.

See, e.g., Heath [1984], Björck [1996, Chap. 6 & 7].
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The backward error for consistent problems I

We consider a system Ax = b such that b ∈ R(A) and let x̃ ∈ Rn be an
approximation to its solution.

Let ECS(x̃) be the set of all backward perturbations of the data in Ax = b
associated to x̃,

ECS(x̃) ≡ {[E, f ]; (A+ E)x̃ = b+ f}.

The backward error associated to x̃ is defined as a “size” of a minimal backward
perturbation in ECS(x̃).
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The backward error for consistent problems II

Let α, β be positive and let

ξCS(x̃, α, β) ≡ min{ξ; [E, f ] ∈ ECS(x̃), ‖E‖F ≤ ξα‖A‖F , ‖f‖2 ≤ ξβ‖b‖2}

= min
{∥∥∥∥[ ‖E‖Fα‖A‖F

,
‖f‖2
β‖b‖2

]∥∥∥∥
∞

; [E, f ] ∈ ECS(x̃)
}
.

Then x̃ solves a nearby problem

(A+ E)x̃ = b+ f, ‖E‖F ≤ α‖A‖F , ‖f‖2 ≤ β‖f‖2

if and only if ξCS(x̃) ≤ 1.

The problem was solved by Rigal and Gaches [1967] and the expression for
ξCS(x̃;α, β) is given by

ξCS(x̃;α, β) =
‖r̃‖2

α‖A‖F ‖x̃‖2 + β‖b‖2
, r̃ ≡ b−Ax̃.

If α = O(ε), β = O(ε) the x̃ is usually called the backward stable solution of
Ax = b in finite precision arithmetic characterized by the machine precision ε.
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The backward error for consistent problems III

We may also consider

µCS(x̃; θ) = min{‖[E, θf ]‖F ; [E, f ] ∈ ECS(x̃)}

for some θ > 0. The explicit formula for µCS(x̃; θ) is

µCS(x̃; θ) =
θ‖r̃‖2√

1 + θ2‖x̃‖22
.

Both ξCS and µCS are equivalent in the sense that

1√
2
µCS(x̃; θ)
α‖A‖F

≤ ξCS(x̃;α, β) ≤ µCS(x̃; θ)
α‖A‖F

, θ =
α‖A‖F
β‖b‖2

.
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The backward error for LS problems I

For LS problems, we have

ELS(x̃) ≡ {[E, f ]; (A+ E)T [(b+ f)− (A+ E)x̃] = 0}.

Obviously, ECS(x̃) ⊂ ELS(x̃).

We may define ξ ≡ ξLS and µ ≡ µLS in the similar way as for consistent problems.

Note that the same equivalence of ξ and µ holds as for consistent problems,

1√
2
µ(x̃; θ)
α‖A‖F

≤ ξ(x̃;α, β) ≤ µ(x̃; θ)
α‖A‖F

, θ =
α‖A‖F
β‖b‖2

.
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The backward error for LS problems II

The solution to the optimal backward perturbation problem for LS problems was
an open problem for a long time. It was shown by Stewart [1977] that

E1 = −r̃r̃†A, E2 = (r̃ − r̂)x̃† = PAr̃x̃
†,

are backward perturbations of A corresponding to x̃, i.e.,

(A+ Ei)T [b− (A+ Ei)x̃] = 0, i = 1, 2,

but none of them needs to be optimal. The norms of E1 and E2 are given by

‖E1‖2 = ‖E1‖F =
‖AT r̃‖2
‖r̃‖2

, ‖E2‖2 = ‖E2‖F =
‖r̂ − r̃‖2
‖x̃‖2

=
‖PAr̃‖2
‖x̃‖2

.
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The backward error for LS problems III

The expression for µ(x̃; θ) was provided by Waldén, Karlson, and Sun [1995].

Let

r̃ ≡ b−Ax̃, ω ≡ θ‖r̃‖2√
1 + θ2‖x̃‖22

= µCS(x̃; θ), N ≡ [A,ω(I − r̃r̃†)].

Then
µ(x̃; θ) = min{ω, σmin(N)}.

If b 6∈ R(A), then µ(x̃; θ) < µCS(x̃; θ), i.e., µ(x̃; θ) = σmin(N).
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The backward error for LS problems IV

In comparison with consistent problems, the backward error for LS problems is
much harder to compute: it requires to compute the smallest singular value of the
m× (m+ n) matrix N .

Some attempts to derive tight lower and upper bounds for µ which are cheaper to
compute appeared in Waldén, Karlson, and Sun [1995], Karlson and Waldén
[1997].

The estimate

ν(x; θ) ≡ ω

‖r̃‖2

∥∥∥∥∥
[
A
ωI

] [
A
ωI

]† [
r̃
0

]∥∥∥∥∥
2

was studied by Gu [1998] (see also Karlson and Waldén [1997]) for which

‖r̂‖2
‖r̃‖2

≤ ν(x̃; θ)
µ(x̃; θ)

≤
√

5 + 1
2

≈ 1.618.

Grcar [2003] showed that ν is an asymptotically exact estimate of µ, i.e.,
ν(x̃; θ) ∼ µ(x̃; θ) as x̃→ x̂.
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The backward error for LS problems V

Restricting the backward perturbation to A or to b only:

I Perturbing A:

min{‖E‖F ; (A+ E)T [b− (A+ E)x̃]} = lim
θ→∞

µ(x̃; θ).

I Perturbing b:

min{‖f‖2; AT [(b+ f)−Ax̃] = 0} = ‖PAr̃‖2 = lim
θ→0

µ(x̃; θ)
θ

.

See Arioli and Gratton [2008] for an application in linear regression.
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Stopping criteria based on the backward error

The backward error has an important application in rounding error analysis, see,
e.g., Higham [1996].

It is also recommended for construction of “general purpose” stopping criteria for
iterative solvers; see, e.g., Arioli, Duff, and Ruiz [1992], Arioli, Noulard, and Russo
[2001], Paige and Strakoš [2002].

Let x̃ be an approximation to the solution x̂ computed by an iterative method.
We say that x̃ is an acceptable solution if it solves exactly a nearby problem
within a specified range of relative errors in the data. In particular, if for given α
and β there exists backward perturbations E and f such that

(A+ E)T [(b+ f)− (A+ E)x̃] = 0, ‖E‖F ≤ α‖A‖F , ‖f‖2 ≤ β‖b‖2.

This is equivalent to the condition ξ(x̃;α, β) ≤ 1 which is satisfied if (and “almost
only if” up to

√
2)

µ(x̃; θ) ≤ α‖A‖F , θ =
α‖A‖F
β‖b‖2

.

See also Chang, Paige, and Titley-Peloquin [2009].
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The LS residual, normal equations, and CG

Let x̃ be arbitrary, x̂ be the solution of (LS) and r̃ = b−Ax̃ and r̂ = b−Ax̂ be
the corresponding residuals.

Then the norm of the residual r̃ can be decomposed as

‖r̃‖22 = ‖r̂‖22 + ‖PAr̃‖22,
‖PAr̃‖2 = ‖PA(b−Ax̃)‖2 = ‖A(x̂− x̃)‖2 = ‖x̂− x̃‖ATA.

A natural way how to solve the LS problem iteratively is hence to minimize the
last term which only depends on x̃. This is exactly what CG of Hestenes and
Stiefel [1952] applied on the system of normal equations ATAx = AT b does!

One may apply CG directly to ATAx = AT b or more cleverly in the implicit way
as it is done in CGLS (see Paige and Saunders [1982a]).

However, one may also use the structure of the system matrix ATA and use
another fundamental algorithm: the iterative bidiagonalization by Golub and
Kahan [1965] as it is done in the LSQR algorithm by Paige and Saunders
[1982a,b].
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The Golub-Kahan iterative bidiagonalization

Starting with β1u1 = b and α1v1 = ATu1, the Golub-Kahan bidiagonalizations
generates the sequence of positive αi and βi and orthonormal vectors ui and vi by
two recurrent formulas

βk+1uk+1 = Avk − αkuk, αk+1vk+1 = ATuk+1 − βk+1vk,

for k = 1, 2, . . ., where αi and βi are computed such that ‖ui‖2 = ‖vi‖2 = 1.

Let Uk+1 = [u1, . . . , uk], Vk+1 = [v1, . . . , vk+1], and

Bk =


α1

β2
. . .
. . . αk

βk+1

 , Bk = [Bk, αk+1ek+1].

Then we have

Uk+1(β1e1) = b, AVk = Uk+1Bk, ATUk+1 = Vk+1B
T

k .

In addition, R(Vk) = Kk(ATA,AT b) and R(Uk) = Kk(AAT , b).
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The reduced LS problem in LSQR I

Let x ∈ Kk(ATA,AT b), x = Vky, and r = b−Ax = Uk+1(β1e1 −Bky). The
LSQR approximation xk is constructed by minimizing the 2-norm of the residual,
i.e.,

‖β1e1 −Bkyk‖2 = min
y
‖β1e1 −Bky‖2. (LSQR-LS)

Hence the LSQR is equivalent to CG applied to ATAx = AT b.

The LS problem (LSQR-LS) can be solved by performing the QR decomposition
of Bk

Qk[Bk, β1e1] =
[
Rk fk
0 φ̄k+1

]
.

The action of the kth reflection can be described as[
ck sk
sk −ck

] [
ρ̄k 0 φ̄k
βk+1 αk+1 0

]
=
[
ρk θk+1 φk
0 ρ̄k+1 φ̄k+1

]
.

The vector of coordinates is then obtained by solving for yk the system

Rkyk = fk ≡ [φ1, . . . , φk]T .
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The reduced LS problem in LSQR I

Let x ∈ Kk(ATA,AT b), x = Vky, and r = b−Ax = Uk+1(β1e1 −Bky). The
LSQR approximation xk is constructed by minimizing the 2-norm of the residual,
i.e.,

‖β1e1 −Bkyk‖2 = min
y
‖β1e1 −Bky‖2. (LSQR-LS)

Hence the LSQR is equivalent to CG applied to ATAx = AT b.

The LS problem (LSQR-LS) can be solved by performing the QR decomposition
of Bk

Qk[Bk, β1e1] =
[
Rk fk
0 φ̄k+1

]
.

The action of the kth reflection can be described as[
ck sk
sk −ck

] [
ρ̄k 0 φ̄k
βk+1 αk+1 0

]
=
[
ρk θk+1 φk
0 ρ̄k+1 φ̄k+1

]
.

The vector of coordinates is then obtained by solving for yk the system

Rkyk = fk ≡ [φ1, . . . , φk]T .
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The reduced LS problem in LSQR II

The residuals rk ≡ b−Axk and tk ≡ β1e1 −Bkyk then satisfy

rk = Uk+1tk, tk = φ̄k+1Q
T
k ek+1, ‖rk‖2 = φ̄k+1.

In addition,

φ̄2
k = φ2

k+1 + φ̄2
k+1 ⇒ ‖rk−1‖22 − ‖rk‖22 = φ2

k.

Note that a recurrent formula for the approximations can be derived by computing
direction vectors Wk = [w1, . . . , wk] such that

xk = Vkyk = VkR
−1
k fk = Wkfk.
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Stopping criteria in LSQR

In the original implementation of LSQR, see Paige and Saunders [1982a], the
stopping criteria are based on ξCS and on E1 of Stewart [1977]. The iteration is
terminated when

‖rk‖2 ≤ α‖A‖F ‖xk‖2 + β‖b‖2
or

‖AT rk‖2
‖rk‖2

≤ α‖A‖F .

Both ‖rk‖2 and ‖AT rk‖2 can be cheaply computed in LSQR.

It was observed by Chang, Paige, and Titley-Peloquin [2009] that the stopping
criterion using AT rk can be very conservative; moreover, the convergence of
‖AT rk‖2 to zero can be very irregular (see also Fong and Saunders [2010] for
LSMR).
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Stopping criteria in LSQR: Numerical illustration I

Least squares problem ASH608 from the Harwell Boeing collection
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Stopping criteria in LSQR: Numerical illustration II

Least squares problem ILLC1033 from the Harwell Boeing collection
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Our goal is to provide estimates of

I the norm of the projected residual PArk,

I the backward error µ(xk; θ),

I the asymptotic estimate ν(xk; θ) of µ(xk; θ),

which are cheaply computable in LSQR.

The norm of PAr̃ can be used to provide a bound

µ(x̃; θ) ≤ θ‖PAr̃‖2√
1 + θ2‖x̃‖22

,

which is similar to the backward perturbation E2 = (r̂ − r̃)x̃† provided by Stewart
[1977]; see Chang, Paige, and Titley-Peloquin [2009].

Malyshev and Sadkane [2002] estimate the backward error by running the iterative
Golub-Kahan bidiagonalization on A and the residual vector r̃. In Grcar, Saunders,
and Su [2007] the backward error estimates are based on ν; for sparse LS problems
solved by LSQR an inner iteration is applied to estimate the backward error.
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Estimating ‖PArk‖2 I

LSQR is equivalent to CG applied to ATAx = AT b, so it minimizes ‖x̂− xk‖ATA

at each step. We have

‖x̂− xk‖ATA = ‖A(x̂− xk)‖2 = ‖PA(b−Axk)‖2 = ‖PArk‖2,

so ‖PArk‖2 has the meaning of the energy norm in the equivalent CG on
ATAx = AT b.

The extensive amount of work was devoted to the estimation of the error in CG,
see, e.g., Meurant and Strakoš [2006] and the references therein. Here we
concentrate on the lower bound proposed by Hestenes and Stiefel [1952]. It use in
numerical computations was justified by Strakoš and Tichý [2002].
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Estimating ‖PArk‖2 II

Let d be a positive integer. We have

‖rk‖22 = ‖PArk‖22 + ‖r̂‖22, ‖rk+d‖22 = ‖PArk+d‖22 + ‖r̂‖22.

This gives

‖PArk‖22 = ‖rk‖22 − ‖rk+d‖22 + ‖PArk+d‖22

=
k+d∑
i=k+1

(‖ri−1‖22 − ‖ri‖22) + ‖PArk+d‖22

=
k+d∑
i=k+1

φ2
i + ‖PArk+d‖22
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Estimating ‖PArk‖2 III

Let

λd(xk) ≡
k+d∑
i=k+1

φ2
i .

We can use λd(xk) to estimate
I the norm of PArk, i.e., the minimal backward perturbation of the right-hand

side in the least squares problem (LS),
I the backward error µ(xk; θ) by

µ(xk; θ) ≈ θλd(xk)√
1 + θ2‖xk‖22

.

The estimate λd(xk) satisfies

λd(xk) = ‖Bk+dB†k+dt̄k‖2, t̄k = β1e1 −Bk+d
[
yk
0

]
,

so it can be interpreted as the norm of the minimal backward perturbation of the
right-hand side in the LS problem solved by LSQR at step k + d.
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Estimating ‖PArk‖2: Numerical illustration

Least squares problem WELL1033 from the Harwell Boeing collection

50 100 150 200 250 300

10
−15

10
−10

10
−5

10
0

ψ
(x

k
,θ

) 
a

n
d

 i
ts

 l
o

w
e

r 
b

o
u

n
d

s

iteration number

P. Jiránek (CERFACS) How to estimate the backward error in LSQR ICS CAS, 20/07/2010 29 / 41



Introduction Backward error in LS problems LSQR Estimating the backward error in LSQR Conclusions References

Estimating µ(xk; θ) I

We wish to estimate

µ(xk; θ) = min{‖[E, θf ]‖F ; (A+ E)T [(b+ f)− (A+ E)xk] = 0}
≡ g(xk, θ, A, b).

Let

µ
d
(xk; θ) ≡ g

([
yk
0

]
, θ, Bk+d, β1e1

)
, µd(xk; θ) ≡ g

([
yk
0

]
, θ, Bk+d, β1e1

)
.

The estimate µ
d
(xk; θ) can be (similarly as λd(xk)) interpreted as the backward

error of the kth approximation of LSQR in the reduced least squares problem
solved at step k + d.

The estimates µ
d
(xk; θ) and µd(xk; θ) represent lower and upper bounds for

µ(xk; θ) which become tighter with increasing d.
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Estimating µ(xk; θ) II

In order to evaluate the estimates we have to compute the minimal singular values
of the matrices

Nk,d ≡
[
Bk+d, ωk(I − t̄k t̄†k)

]
, Nk,d ≡

[
Bk+d, ωk(I − t̄k t̄†k)

]
,

where ωk ≡ θ‖rk‖2/(1 + θ2‖xk‖22)1/2, t̄k = [tTk , 0
T ]T .

However, the vector tk = UTk rk is not available in LSQR. We can use the relation
tk = φ̄k+1Q

T
k ek+1 to show that Nk,d has the same singular values as

Mk,d ≡ [Q̂kBk+d, ωk(I − ek+1e
T
k+1)].

The matrix Mk,d can be transformed to a bidiagonal form using 2(k + d+ 1)
Givens rotations and the smallest singular value can be computed using the
method of bisection.

We can proceed similarly with the matrix Nk,d.
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Estimating µ(xk; θ): Numerical illustration I

Least squares problem WELL1033 from the Harwell Boeing collection
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Estimating µ(xk; θ): Numerical illustration II

Least squares problem WELL1033 from the Harwell Boeing collection
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Estimating ν(xk; θ)

Similarly to µ(xk; θ) we can bound the quantity ν(xk; θ),

ν(xk; θ) =
ωk
‖rk‖2

∥∥∥∥∥
[
A
ωkI

] [
A
ωkI

]† [
rk
0

]∥∥∥∥∥
2

, ωk =
θ‖rk‖2√

1 + θ2‖xk‖22
,

using

νd(xk; θ) =

∥∥∥∥∥
[
Bk+d
ωkI

] [
Bk+d
ωkI

]† [
t̄k
0

]∥∥∥∥∥
2

,

νd(xk; θ) =

∥∥∥∥∥
[
Bk+d
ωkI

] [
Bk+d
ωkI

]† [
t̄k
0

]∥∥∥∥∥
2

.
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Conclusions and future work

I We presented cheaply computable estimates of the backward error in LS
problems in the context of the LSQR algorithm. To some extent they can be
applied also to another equivalent algorithms like CGLS.

I However, their applicability is limited, e.g., when using a preconditioner.

A possible outlook:

I A refined analysis of the relation between ‖PAr̃‖2 and µ, especially the lower
bound if possible.

I Quantitative analysis of µ ≈ µ?

I Estimation of minimal backward perturbation in related problems like
damped least squares problems

min
x

{
‖b−Ax‖22 + λ2‖x‖22

}
.

P. Jiránek (CERFACS) How to estimate the backward error in LSQR ICS CAS, 20/07/2010 36 / 41



Introduction Backward error in LS problems LSQR Estimating the backward error in LSQR Conclusions References

Conclusions and future work

I We presented cheaply computable estimates of the backward error in LS
problems in the context of the LSQR algorithm. To some extent they can be
applied also to another equivalent algorithms like CGLS.

I However, their applicability is limited, e.g., when using a preconditioner.

A possible outlook:

I A refined analysis of the relation between ‖PAr̃‖2 and µ, especially the lower
bound if possible.

I Quantitative analysis of µ ≈ µ?

I Estimation of minimal backward perturbation in related problems like
damped least squares problems

min
x

{
‖b−Ax‖22 + λ2‖x‖22

}
.
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Thank you for your attention!

For more information, see

P.J., David Titley-Peloquin, Estimating the backward error in LSQR,
SIAM J. Matrix Anal. Appl., 31(4):2055–2074, 2010.
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P. Jiránek (CERFACS) How to estimate the backward error in LSQR ICS CAS, 20/07/2010 41 / 41


	Introduction
	Backward error in LS problems
	The Golub-Kahan bidiagonalization and LSQR
	Estimating the backward error in LSQR
	Conclusions
	References

